许吉友 - 运维

HDFS 原理详解

HDFS 主要分为两种角色:NameNode 和 DataNode,NameNode 负责记录一些数据的元信息,DataNode 是实际储存数据的地方。

客户端连接时,需要先连接 NameNode,然后获取到数据的地址,再与 DataNode 交互来获取数据。

HDFS 的主要特性 :

HDFS 是被设计为面向大数据的,所以有以下情况并不适用:

NameNode

NameNode 中,主要维护两个文件,一个是fsimage,一个是editlog,它主要就是通过这两个文件实现的元数据记录。

fsimage保存了最新的元数据检查点,包含了整个HDFS文件系统的所有目录和文件的信息。对于文件来说包括了数据块描述信息、修改时间、访问时间等;对于目录来说包括修改时间、访问权限控制信息(目录所属用户,所在组)等。

editlog主要是在NameNode已经启动情况下对HDFS进行的各种更新操作进行记录,HDFS客户端执行所有的写操作都会被记录到editlog中。

简单来想,NameNode维护了文件与数据块的映射表以及数据块与数据节点的映射表,什么意思呢?就是一个文件,它切分成了几个数据块,以及这些数据块分别存储在哪些datanode上,namenode一清二楚。Fsimage就是在某一时刻,整个hdfs 的快照,就是这个时刻hdfs上所有的文件块和目录,分别的状态,位于哪些个datanode,各自的权限,各自的副本个数。然后客户端对hdfs所有的更新操作,比如说移动数据,或者删除数据,都会记录在editlog中。

为了避免editlog不断增大,secondary namenode会周期性合并fsimage和edits成新的fsimage,新的操作记录会写入新的editlog中,这个周期可以自己设置(editlog到达一定大小或者定时)。

FSImage 和 EditLog 的合并过程如下:

img

可以很清晰看出,第一步:将hdfs更新记录写入一个新的文件——edits.new。

第二步:将fsimage和editlog通过http协议发送至secondary namenode。

第三步:将fsimage与editlog合并,生成一个新的文件——fsimage.ckpt。这步之所以要在secondary namenode中进行,是因为比较耗时,如果在namenode中进行,或导致整个系统卡顿。

第四步:将生成的fsimage.ckpt通过http协议发送至namenode。

第五步:重命名fsimage.ckpt为fsimage,edits.new为edits。

这样的话,fsimage与editlog合并的过程就完成了。所以如果namenode宕机,其实secondary namenode还保存这一份不久前的fsimage,还能挽回一些损失吧。

一旦有datanode挂掉了(宕机或者是网络阻塞),namenode能很快感知到,并且将宕机的节点上的数据块转移至其余空闲节点。这点是因为hdfs中心跳机制(heartbeat)。

心跳机制默认3s中一次,datanode会向namenode发送一次一跳,告知namenode当前节点上存放的数据文件是什么。如果namenode中记录的是该datanode存放了文件A的两个数据块和文件B的一个数据块,但是心跳中只有文件A的一个数据块信息,namenode就会知道该datanode数据块损坏了,会把损坏的数据块在别的datanode上补充。